10^2=x(2x+4)

Simple and best practice solution for 10^2=x(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10^2=x(2x+4) equation:



10^2=x(2x+4)
We move all terms to the left:
10^2-(x(2x+4))=0
We add all the numbers together, and all the variables
-(x(2x+4))+100=0
We calculate terms in parentheses: -(x(2x+4)), so:
x(2x+4)
We multiply parentheses
2x^2+4x
Back to the equation:
-(2x^2+4x)
We get rid of parentheses
-2x^2-4x+100=0
a = -2; b = -4; c = +100;
Δ = b2-4ac
Δ = -42-4·(-2)·100
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{51}}{2*-2}=\frac{4-4\sqrt{51}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{51}}{2*-2}=\frac{4+4\sqrt{51}}{-4} $

See similar equations:

| 8y-4y-15=51 | | z/4+8=12 | | 6x+4x-9x=5 | | 6x–3=2x–7 | | 43+26+x=180 | | g÷6.9=12.8 | | 10+x=57 | | 2x-5(x-4)=-9+4x+8 | | x2=256^-1 | | 5.1d+2.7=1.2d+15.8 | | 2-1/3s=3/4s+13 | | g-1.95=2.87 | | -4+6m=-8 | | 3y+4y+6=20 | | (4x+6)+(4x-4)=90 | | 3/8p=51 | | 2.4r-42=23 | | 4=z+8/7 | | 150+60+2x+x=360 | | 16-3s=7 | | 6+13-s=8 | | 2x–5=8x+7 | | 59=24+7y | | 15-s=2+2 | | 13-s=2 | | k/9+73=79 | | 19-3yy=2 | | 3x+10=10x-40 | | 34x3x=(35)4​​​​ | | 34=2c-76 | | 21/63=n/3 | | 7/n=12/5 |

Equations solver categories